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Abstract

Solids subjected to high pressures, shocks, and/or deformation experience an

increase in internal energy density and temperature due to adiabatic compres-

sion, shock heating, and plastic work heating, respectively. Analytic approx-

imations are derived here for the internal energy and temperature changes

that result from these processes based on the analytic constitutive model and

Grilneisen equation of state of D. Steinberg. Although of general use, the

utility of the expressions is demonstrated by the detailed example of a cylin-

drical metal tube filled with high explosives, and detonated on axis at one

end. This geometry is often used to determine the detonation properties of

high explosives, where it is known as the "cylinder test". The geometry is

also of special interest for use as the armature of cylindrical magnetic flux

compression pulsed current generators. The results are favorably compared

with two dimension numerical simulations of the process using Lawrence Liv-

ermore National Laboratory's shock-hydro computer code GALE using the

same model for the metal.

1. INTRODUCTION

This paper was originally motivated by a need to better understand the thermodynamic

evolution of explosively expanded metal tubes. AFRL's Directed Energy Directorate (DE) is

developing explosive axial magnetic flux compression [pulsed current] generators [1] (FCG's)

suitable as the primary energy source for expendable devices requiring very high electrical

pulsed power. These generators use a cylindrical metal armature filled with high explosive

and detonated on axis at one end. This geometry is independently known as the "cylinder

test" in explosives research, being well suited for the analysis of the properties of explosive

products [22]. In the generator application, axial magnetic flux trapped between the ex-

panding armature and a surrounding helically wound stator is compressed, generating high
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current. The shock to, and plastic expansion of the armature results in an increase in the

armature's temperature, leading to increased electrical resistivity and possible melting. If

melting occurs, further flux compression is impaired by a greatly enhanced Rayleigh-Taylor

instability. Even before melting, the expansion process itself can become unstable, with

the armature fragmenting by plastic instability. These processes result in decreased per-

formance, and more detailed modeling of them is necessary. The principle tool used for

modeling the pulsed power circuit is CAGEN [2], which couples a lumped circuit to a zero

dimensional simulation of the generator for which the armature is characterized by its outer

radius as a function of axial position and time R(z, t). One application of results presented

here is to improve the electrical resistivity treatment of the armature model in programs

like CAGEN. Given additional simplifying assumptions, energy and temperature estimates

are rendered in purely analytic form. In the process, analytic solutions to energy and tem-

perature changes due to basic mechanical processes are derived based on Steinberg's form

[3] of the Griineisen equation of state [4] and the Steinberg-Cochran-Guinan constitutive

relations for material strength [5], hereafter referred to as the "Steinberg model". These

general solutions are the primary emphasis of this paper because of their wider potential

interest, with the cylinder test application presented thereafter as a detailed example their

utility.

The Steinberg model is a popular dynamic model of solids, especially metals, which un-

dergo high rates of strain and compression (> 10' s-1 ). Many materials have been character-

ized for it [3], and it is used in several hydrodynamic and magnetohydrodynamic computer

codes [6] [7] [8] [91 [10] [11]. Despite the model's analytic form, though, its potential for

deriving approximate analytic solutions has not been well exploited. The more general ex-

pressions presented should prove to be useful tools for studying a wide variety of dynamically

deforming geometries. The symbolic form of the expressions should make various depen-

dences on variables more apparent and parameter space surveys easier to accomplish than

with codes alone. Follow-up with computer modeling of promising configurations thereby

identified may then be pursued more productively.
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Section II reviews adiabatic compression in the Steinberg model and provides useful ap-

proximations for internal energy per unit mass E and temperature T along the adiabat.

These expressions are needed to calculate T as a function of compression and E more gener-

ally. Section III derives E and T approximations that result from planar shocks traversing

a solid with standard initial conditions. Section IV derives an expression for the change in

E as a function of the equivalent deviatoric strain E resulting from plastic deformation. This

expression is particularly useful because it takes into account the important effects work

hardening and thermal softening in the Steinberg model, although elasticity, compressibil-

ity, and the pressure dependence of the yield strength are neglected. Section V presents a

detailed example of how the derived expressions may be used for explosively expanded cylin-

ders. Section VI presents results of two dimensional numerical simulations of this cylinder

test for comparison with the analytic expressions to gauge how well the analytic approxima-

tions represent the Steinberg model. Discussion of the empirical validity of the model itself

is covered in the supplied references and is considered beyond the scope of thlis paper.

One shortcoming of the approximations presented for shock heating and plastic work

is that they assume both processes do not occur simultaneously. A more unified thermo-

mechanical treatment is required, in particular, where shocks are strongly nonplanar, such

as in impact cratering. Fortunately, there are many other cases where one process dominates

the other or they occur on different time scales. The cylinder test presented is an example

of the latter. Thermal conductivity is neglected throughout due to the short time scales of

the processes involved.

11. TEMPERATURE AND ADIABATIC HEATING

The Steinberg model's relationship between pressure P, density p, and internal energy

per unit mass relative to that at standard conditions (P = 0, temperature T = TR = 300K)

E is [5],
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, 7 + (-yo + bt) poE if p > 0

P(pt,E) p + -),-s~ -sa (21 (1)

P.poCi +po+yoE if P < 0

Here, M = P/Po - 1 and Co (sound speed), P0 (standard density), -yo, b, S1, S 2, and S3 are

available phenomenological parameters [3] described more fully in the references.

To find an expression for T, we start with T = (E - E,) /C for fixed A, where C is

specific heat (assumed constant in the Steinberg model) and E, = E at compression [p and

T = 0 [5]. Subtracting both sides of this equation, solved for the special case of the adiabat

from standard conditions were T = To(p) and E = Eo(p), from the respective sides of the

general case results in,

T(E, ) = To(p) + E - Eo(p) (2)
C

To(p) may be found from the adiabatic relationship [12],

To = TR exp [- ' dV' -Y(V)=V (3)

where V is a sample volume (with Vo its standard conditions value), & is internal energy,

and -y is the Griineisen ratio [12] [3]. Changing variables via V = Vo/(Mu+ 1) and S = poVoE,

using Eq. 1 for P, and integrating,

TR(p+ 1)bexp ((-i-b)p if [.>0 ( ,iY) b(To -0= (111 )-YGL)- (4)
TRexp Y( ) if t <0 < +

This expression may be recognized as a generalization the Steinberg model's melting tem-

perature [3], which is assumed to follow the adiabat.

Eo(p), meanwhile, may be found from Eq. 1 since dE = - PdV along an adiabat. This

results in the following differential equation and its solution [13],

dE _P(p, E) E0p) Top o (pl, 0) ,

dIL po(, + 1)2 PO10 (P +[, )2TO(tI,)da (5)

This expression may be approximated to within 2% in the specified ranges by,
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{ C°2TO(--) E 4_ ail? if 0 < t < 0.35
R T =2 b•p' if -0.20 < p < 0

a 3  1 (4S 1 - 6 - 30yo)
a2 2 6 3

a 4 = 800 exp (býo_ ) ( 4 )b25S1 +S2°4-- (2S1- 3- (6)
b2-= b3 =-i (2+-yo) b4 = i(6+60yo+72)

4 (-8192exp (^) + 8134 + 10 7 8 0yo + 49Y2)

The coefficients are determined by Taylor expansion of the integrand of Eqs. 5, except for

a4 and b5.For greater accuracy, the latter are chosen to make the integrand error zero at

I-' 1 and 1

III. SHOCK HEATING

If we assume the external pressure rises instantaneously from 0 to a constant P1 upon the

arrival of a planar shock wave through an initially stationary solid with standard conditions,

the shocked material properties can be described by the Hugoniot relations [14], expressible

as,

2 (O ± + 1)P 1  K _--E2 IEtip 1P Pl 1 (7)
I-iPo 2 2po (/tl + 1) P0

pi, vi, P 1, E1 ,and K1 are density, velocity, P, E, and kinetic energy per unit mass behind

the shock, respectively, and v, is shock speed. Substituting E1 in Eqs. 7 into Eq. 1, with

P = P 1, and solving for P1 gives us our Hugoniot function,

P P0oC02[1 (IL, +- 1)

1 - S()
S [1 $- 1) P1- S2• P -+ $ +1)2

For modest compressions, we may neglect the S2 and S 3 terms [15]. Eq. 8, then, reduces to

a quadratic in p, with (meaningful) solution,

V=41lS 1 + 1- 21I (Si - 1)- 1 P1  (9)
2 - 211 (Si - 1)' -P0oC2(
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Plugging this into (Eqs. 7) gives,

2_ rHc C2ai02lCo

Vs- K 2 = L2 _ El (10)
a, 2 2

ILI /4lS 1 +1 - 211 (S 1 - 1) - 11l -- -- 1 1 ±-fl 1 S 1 1± (11)a, 1y + V'4 ý/ISj + 1 - 21IS, (SI - 1) + I

The temperature behind the shock is, from Eq. 2,

Ti = T(Ei, IL) (12)

One important application to the solutions above is the case of a explosive detonation

wave which interacts with a plate or shell. In this case, the initial shock compression

unloads at the surface opposite the explosive, sending an continuous adiabatic rarefaction

wave inward. Some energy is transmitted back into the explosive products, and some reflects

as a second outward shock. El -E 0 ([i) is the irreversible contribution to the energy behind

the initial shock and is, therefore, a lower bound on the final energy E, after the explosive

products and waves dissipate, and pressure falls off. Before this, though, secondary shocks

and rarefactions continue to increase heat and smooth the pressure profile, respectively. An

upper bound on E8 is El itself, so we have,

E1- Eo([1) < Es < E1  (13)

To find the temperature corresponding to E = E, after pressure fall off, we solve to Eq. 1

for L = -'-yoE/C• (negative due to thermal expansion) at P = 0 and plug into Eq. 2,

T = T(E, -yoE/C2) (P = 0) (14)

IV. PLASTIC WORK HEATING

The contribution to E from plastic work heating Ep as a function of E's initial value

E, and equivalent plastic strain c may be derived in closed form for the Steinberg model,
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provided we neglect compressibility, elasticity, the pressure dependence of the uniaxial yield

strength Y, and other active heat sources. The (usually more important) effects of work

hardening and thermal softening of the material are retained, however. Though E, is of

arbitrary value in this section, we use the same symbol that was used for shock heating in

the previous section to suggest one potential origin.

Neglecting elasticity, the Levy-Mises (L-M) relation for rigid plastic flow is [16],

D =ID3dS 2 -\/-D.Ddt (15)
2 2dt Y V

where D and S are the deviatoric strain rate and stress tensors, respectively. The Steinberg

model's strain rate independent material strength equation [5] is,

Y 1+ AP -B(T-TR)l {YO[I+/3(C+ Ei)] ifE<cE (16)
- (1 + i)I B(- X ymax ifE > C

where A, B, /3, n, Ymax, and Yo, and ej are phenomenological parameters tabulated for

several materials [3], and,

gc (Ymax/Yo)l/n - 1 (7--- -)/ Ei (17)

We neglect the P dependent term in Eq. 16 and use, assuming incompressibility, (T - TR) -

E/C, from Eq. 2. Given these assumptions, the plastic work rate [16] per unit mass is, using

Eqs. 15 and Eq. 16,

dEpS.D - Yd 1-Y EdE -Yo[lYO[(1+0O )]+ (18)
dt p po dt po dt IYmax

where Po is the standard mass density of the material (assumed constant). Here and hence-

forth, the upper and lower expressions are for E < Ec and c > E,, respectively, unless otherwise

specified. Assuming further that there is no other active heat source, then E = Ep + Es,

and Eq. 18 is reducible to a differential equation in Ep with reference to E with solution,

F,, ==( - FE) - (C- E.) x
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Sexp [ B ~ [±3(c+E]~ [1±ocf+)B Yo [ + + i]n+l -_ [I1 , n 1
"P -Cpo)3(n+I 1 (19)

exp [ B )Y ([1± /3 (E ± Ej)]n - [1 + -3i]n+ 1 ) BYmaxcp0 (E (9)]

Note, if thermal softening is neglected, one must take the limit of B -- 0, or (better yet)

resolve Eq. 18 with B = 0,

SYo p[ + 0 (E + i)]n+l - +[ +/3,]n+1)

lim EP -- I po/ 3(n+l) (20)B-0o YO n+1p0/3(n+l) ([1 ÷/3 (e+ ÷ 6)]fl+l - [1 ÷/3]7+1) ± Y -+

E = E, + EP may now be used in Eq. 14 to determine the temperature.

V. EXAMPLE - EXPLOSIVELY EXPANDED TUBE

A. Geometry

We consider the example of a long (compared to its diameter) cylindrical tube of duc-

tile metal loaded with high explosive and detonated on axis at one end. Upper and lower

bounds on the shock heating of the tube, an estimate of the subsequent plastic work heating

as the tube wall flares outward into a cone, and (as a caveat) the critical radius for the onset

of plastic instability are derived. Much analytic theory [17] [18] [19] [20], computational

modeling [21] [22], and experimental results [18] [23] [22] have been published on the this

geometry, with details of the detonation wave and explosive products properties and interac-

tion particularly well covered. Emphasis here will be placed instead on the thermal response

of the tube material itself. Fortunately, for the simplest approximations presented, effects

of the explosive products on shock heating and plastic work as a function of the expanding

radius of the cylinder can be parameterized by the pressure P1 behind the initial shock that

traverses the tube wall after the detonation wave passes and the ratio Vr/D, where V, is the

radial expansion speed of the tube after it has expanded by a significant amount relative

to the initial radius and D is the detonation speed. Existing models to estimate these two

parameters are referenced.
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B. Initial shock heating

The detonation wave in the subject case is primarily transverse to the inner cylinder

wall. P1 may be estimated by an available model [24] which assumes the explosive products

can be described by Prandtl-Meyer flow around a sharp corner [25] with a self-consistently

determined angle created by the compression of the tube wall due to the first shock. A

necessary condition for this is that D be larger than the shock speed in the solid. This

is the case for most high explosives on metals other that Be . An ideal gas with constant

gamma adiabatic law for the products with the Chapman-Jouget (C-J) values for the initial

pressure Pj, density pj, and particle speed vj behind the shock are assumed [26] [27],

(i+l D (21)

Here, p,, is the explosive's initial density, and -yj is a phenomenological parameter. Higher

order shock terms S2 and S 3 in the metal's EOS are neglected, as was done in Section III.

To simplify Neal's solution to P 1, we note the integral required to obtain the plate surface

deflection angle a, based on the explosive product response (Neal's Eq. 6), has solution,

• arc~s/-! ( __-____I __ ___/ ___1_-_/2

a arcco= arccos V + 1 + V/2+ arccos + -- (22)

where 77 is defined below. 71 may also be expressed in terms of the angle 0 between the

metal shock front and the z-axis with the help of the equations which describe the metal's

self-consistent response to P1 (Neal's Eq. 10 and Eq. 12),

(P ) 21(poD2( 1  D(Si -1) sin0+ Co ) sin (23),y
r P= Pi-•j 1 D S --n, sin 0 (23)

Meanwhile, Neal's Eq. 12 solved for a, is,

a = 0- arctan (D (Si -1) DS1 o0 (24)

Intersecting this with Eq. 22, using the second expression in Eq. 23 for r1, gives 0 and

therefore, from Eq. 23, P 1. An good starting point for Newton's method to find this

intersection is the average of,
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0 min= arcsin (-) and Omax,= arcsin POCO±+ p2Co2+4±4pojS1o(25)

D ~~2poD (5

Omin corresponds to the acoustic limit for metal shock speed, and 0 max corresponds to 77 1

(P1 = Pj) in Eq. 23. There is no real and meaningful solution to Eq. 22 outside this range.

Generally speaking, one obtains values of P1 for the metal shock roughly half that obtained

from the more commonly treated case of the interaction of a detonation wave normally

incident to the interface [28].

After obtaining an estimate of P1, E1 and bounds on E, may be found from Eq. 10 and

Eq. 13, respectively.

C. Subsequent plastic deformation

Given an axisymmetric thin walled shell of radius R = R(z, t) expanding at radial velocity

V = V(z, t), and zero axial velocity, nonzero components of D and 6 are, from Eqs. 15,

(D,,, Doo, Dz,) = (1,1, 0) Drz = Dzr = 20z (26)

2 V2 (1V212+ , ( 1 ] dt (27)

In a thin shell model where R (z, t) is independently determined and there are no other

active heat sources, Eq. 27 may be plugged into Eq. 19 directly to determine Ep(z, t). On

the other hand, if other active sources of heat are present, differentiating Eq. 27 w.r.t. t and

plugging into Eq. 18 gives us the more general expression for the plastic work contribution

to the heating rate,

dEP - 2 (1 -- E) [(VEE2 1 OV \1 2] yo Y[1 +3( )]n (28)

To simplify things further, a reasonable estimate of the plastic heating may be made by

using the following approximations for V and, from Eq. 27, c,
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2 R Vr z
V = Vr(Dt - z) =-In + ± for t > (29)

Here, V, and D are the radial expansion velocity and the axial explosive detonation velocity,

respectively, and both are assumed constant. 8(z) is the Step Function. In other words,

we assume the armature is stationary until a purely axial shock front passes, at which time

the armature is instantaneously accelerated to radial velocity V,, flaring out into a conical

shape. The simplest approximation for V•, meanwhile, is provided by the Gurney Equation

[17] [20],

Vr= 2EM (-+ (30)

where M is the total cylinder mass, and M. and E., are the total explosive mass and

phenomenological "Gurney energy" (liberated chemical energy per unit mass), respectively.

Given V, and D, e from Eq. 29 may be substituted directly into Eq. 19 to determine Ep.

One may then add Ep to the bounds on E, and use Eq. 14 to bound the temperature due

the combined effects of shock and plastic work heating.

In the above, azimuthal symmetry is assumed. It is worth noting, however, that expan-

sion beyond a critical point is unstable, and after a period of subsequent instability growth,

the liner will fail. A band of ductile material being stretched will undergo plastic instability

when the relative increase in the yield strength dY/Y due to work hardening over a time

interval dt falls below the relative decrease in the band's cross sectional area dA/A. In the

incompressible limit, this occurs when [29] Y = dY/dc. From Eq. 16, neglecting thermal

softening, this condition is met when c reaches the following value, which corresponds to the

given radius, based on Eq. 29,

n-l-ei if n--1-Ej<Ec v/-3 V, 31{ 27 )i Rp = Roexp - (31)
cc if n- -ci_> Ec

If this expression yields Rp < Ro, then expansion is unstable from the onset and Rp = R0

may be used instead.
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D. Tabulated results for a few metals

This section tabulates shock and plastic work heating estimates for a few metals for the

case of a cylinder driven by LX-14 to radial speed V, = 2702 m/s. D = 8800 m/s, px = 1835

kg/m 3a, and -j = 2.947 are used for LX-14 [22], based on parameter set 360A of the cited

reference. E. is taken to be 95% that of HMX [20] (LX-14 is HMX with 5% binder), giving

-E - 2895 m/s. P1 is calculated by the method described in Section V-B. The assumed

V, corresponds to an A16061-T6 cylinder with inner radius 3.175 cm and wall thickness 0.635

cm, based on Eq. 30. It is presumed that we adjust the wall thickness to give the same M

and, therefore Vr, for the other metals tabulated.

Given Vr/D = 0.307, P1 for the different metals, and the Steinberg parameters for the

solid, the heating terms may be found. E1 is calculated from Eq. 10. Bounds on E are

calculated from Eq. 13. Ep is calculated from Eq. 19 at radius R = 2R 0 ( 6 = 0.978 from Eq.

29) for the cases where E, equals the lower and upper bounds due to shock heating (max

and min here refer to EB). The respective temperatures at each bound and stage are found

from Eq. 12 for E1 and from Eq. 14 for the other (zero pressure) terms. The expansion

factor for onset of instability Rp/Ro is found from Eq.31. S2 = S3 = ci = 0 for the tabulated

alloys. Silver is included since its high Rp/Ro and unsurpassed electrical conductivity make

it an intriguing, albeit expensive, option for an explosive generator armature.
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Al 6061-T6 Al 1100-0 Cu OFHC SS 304 W Ag

Co (m/s) 5240 5390 3940 4570 4030 3270

S1  1.40 1.339 1.489 1.49 1.237 1.55

'Yo 1.97 1.97 2.02 1.93 1.67 2.4

b 0.48 0.48 0.47 0.50 0.38 0.56

Yo (MPa) 290 40 120 340 2200 50

Ymax (MPa) 680 480 640 2500 4000 660

0 125 400 36 43 24 28

n 0.10 0.27 0.45 0.35 0.19 0.8

B/IO- 4 (K- 1) 6.16 6.16 3.77 4.55 1.38 4.36

PO (kg/M 3) 2703 2707 8930 7900 19,300 10,490

C (J/kgK) 885 884 383 423 129 233

P1 (GPa) 19.6 19.8 23.7 24.0 27.3 23.5

El, E, max (kJ/kg) 578 575 155 158 51.0 148

E, min (kJ/kg) 108 103 21.8 19.3 3.46 25.9

Epmin(kJ/kg) 136 52.1 44.6 109 159 82.1

Ep max(kJ/kg) 88 33.6 38.6 923 151 62.3

T1 (K) 536 528 437 413 366 525

T, min (K) 417 411 355 344 327 406

T, max (K) 901 901 684 659 691 887

Tp min (K) 561 467 466 593 1535 549

TP max (K) 987 935 777 864 1829 987

P/Ro 1 1.08 1.24 1.24 1 1.66

E. Comparison with CALE 2-D simulations

Results of a 2-D shock hydro simulations by program CALE [6] [7] are presented for

comparison with the Al 6061-T6 and Cu analytic approximations, and to better quantify
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E, for which we have, at present, only broad bounds. We use 30 cm long liners with

the same inner radius and mass as before and loaded with LX-14, for these simulations.

The LX-14 is detonated at the left end of the cylinder on the z-axis (r =z =0) at time

t =0. The simulations also assume the Steinberg model for the metal, so the test here

is of the accuracy of our analytic approximations to the Steinberg model, as opposed to

the model itself. Instead of the C-J EGS for the LX-14 products, though, CALE uses the

Jones-Wilkins-Lee (JWL) EOS [30] with coefficients [22] A =:11.65, B =0.5572, R, =5.4,

R 2 =2.0, and w =0.45. These parameters are taken from same consistent set of data (360A)

as the C-i parameters used for the analytic model for maximum consistency. Note, though,

that several alternative choices for LX-14 JWL coefficients are available in this reference and

others [31] [32].

Figure 1 is a pressure map close-up of the Al 6061-T6 run 30 pts after detonation, when

the detonation wave has reached z ;z: 26.4 cm. One can see here the prompt detonation

products (contour 9), the high pressure region behind the initial Al shock wave (contours 5

and 6), and the much lower pressure of the second shock transmitted outward through the

Al (contour 1). Details are blurred due to the initial square mesh length of 0.714 mm. The

peak pressure behind the Al shock is P, -_ 20 GPa, very similar to the value obtained by

Neil's method.

Figure 2 shows the time history of total internal energy density of a fluid element in the

Al 606 1-T6 CALE simulation midway between the ID and the OD of the Al (to minimize

edge effects due to the finite mesh size) and initially at z=16 cm. (solid line). The element's

radius increases by a factor of two at t = 34.4 [ts, as labelled by the cross hairs on this curve.

The results of the analytic model's upper and the lower bounds on E, + Ep are overlaid.

Here, we assume E, is instantaneously thermalizes upon shock transit and that thereafter

the liner expands at the Gurney speed (Eq. 30) V, = 2702 in/s in accord with Eq. 29,

with only plastic heating occurring during expansion. The initial radius used for calculating

plastic strain is that at mid wall. The difference between shock heating, as signified by the

cross hairs at E, mmn and E, max, and the start of the energy ramp up is the initial plastic
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work due to shear as the metal is assumed to jump suddenly to speed Vr. As with PI,

there is good agreement between the two models in regard to El behind the initial Al shock

(recall this equals E, max, labelled by the upper left cross hairs). There is also reasonable

agreement between the two models after shock dissipation (t -- 23 ps) provided we assume

Ef ;:: Ev min. The reason for this is clear from the small magnitude of the second shock

(t -- 20 ps). Apparently, the Al rarefaction wave efficiently couples to the explosive products,

reflecting very little energy back outward as a second shock. E, -- E., min, then, may be

assumed for HE driving Al. As the liner expands, though, the analytic model overestimates

Epvs. time. The reason for this is that plastic strain, and therefore heating, is primarily a

function of expansion factor (Eq. 29), and the Gurney equation overestimates the average

speed of the liner during the period shown. The expansion velocity at the doubled radius of

the Al in the CALE run is only V, = 2500 m/s, with 90% of this not attained until t =23

jts (5 ps after shock arrival). The energy discrepancy is significantly less (analytic is 6 %

higher) if one compares the models at the point were the radius at mid wall has doubled

(right cross hairs).

Figure 3 shows the same plot as Fig. 2, but for the Cu cylinder. Here, the analytic

model's lower bound results in an energy density at doubled radius 5% lower than for the

CALE run. The analytic value there being lower this time may due to the (much denser)

Cu having a greater impedance mismatch to LX-14 than Al, resulting in the second shock

having a greater relative contribution. The Gurney speed overestimates V, by about the

same amount as it did for the Al run.
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Figure Captions

Fig. 1 Pressure map at 30 ps of a CALE simulation of a 3.81 cm GD, 0.635 cm thick,

30 cm long Al 6061 T-6 tube filled with LX-14 and detonated on axis at the left end.

Fig. 2 Internal energy density vs. time for Al 6061-T6 loaded with LX-14 midway

between ID and GD of the cylinder, initially at z =16 cm. CALE simulation (solid line).

Upper and lower bounds from analytic model (dashed line). Cross hairs signify upper and

lower bounds on dissipated shock heating (left) and the time on the respective curves where

the radius has doubled (right).

Fig. 3 Same plot as Fig. 2, but for Cu (1/2 hard) loaded with LX-14.
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